it is a low-code machine learning library in Python that automates machine learning workflow
Installation and usage
# install pycaret
pip install pycaret==2.0
# create notebook kernel linked with the conda environment
python -m ipykernel install --user --name yourenvname --display-name "display-name"
Initialization
# Import module
from pycaret.classification import *
# Initialize setup (when using Notebook environment)
clf1 = setup(data, target = 'target-variable')
# Initialize setup (outside of Notebook environment)
clf1 = setup(data, target = 'target-variable', html = False)
# Initialize setup (When using remote execution such as Kaggle / GitHub actions / CI-CD pipelines)
clf1 = setup(data, target = 'target-variable', html = False, silent = True)
compare model
The evaluation metrics used are:
- Classification: Accuracy, AUC, Recall, Precision, F1, Kappa, MCC
-
Regression: MAE, MSE, RMSE, R2, RMSLE, MAPE
#import classification module from pycaret.classification import * #init setup clf1 = setup(data, target = 'name-of-target') #return best model best = compare_models() #return best model based on Recall best = compare_models(sort = 'Recall') #default is 'Accuracy' #compare specific models best_specific = compare_models(whitelist = ['dt','rf','xgboost']) #blacklist certain models best_specific = compare_models(blacklist = ['catboost','svm']) #return top 3 models based on Accuracy top3 = compare_models(n_select = 3)
Create Model
# import classification module
from pycaret.classification import *
# init setup
clf1 = setup(data, target = 'name-of-target')
# train logistic regression model
lr = create_model('lr') #lr is the id of the model
# check the model library to see all models
models()
# train rf model using 5 fold CV
rf = create_model('rf', fold = 5)
# train svm model without CV
svm = create_model('svm', cross_validation = False)
# train xgboost model with max_depth = 10
xgboost = create_model('xgboost', max_depth = 10)
# train xgboost model on gpu
xgboost_gpu = create_model('xgboost', tree_method = 'gpu_hist', gpu_id = 0) #0 is gpu-id
# train multiple lightgbm models with n learning_rate
lgbms = [create_model('lightgbm', learning_rate = i) for i in np.arange(0.1,1,0.1)]
# train custom model
from gplearn.genetic import SymbolicClassifier
symclf = SymbolicClassifier(generation = 50)
sc = create_model(symclf)
Tune Model
tunes the hyperparameter of the model passed as an estimator
# import classification module
from pycaret.classification import *
# init setup
clf1 = setup(data, target = 'name-of-target')
# train a decision tree model
dt = create_model('dt')
# tune hyperparameters of decision tree
tuned_dt = tune_model(dt)
# tune hyperparameters with increased n_iter
tuned_dt = tune_model(dt, n_iter = 50)
# tune hyperparameters to optimize AUC
tuned_dt = tune_model(dt, optimize = 'AUC') #default is 'Accuracy'
# tune hyperparameters with custom_grid
params = {"max_depth": np.random.randint(1, (len(data.columns)*.85),20),
"max_features": np.random.randint(1, len(data.columns),20),
"min_samples_leaf": [2,3,4,5,6],
"criterion": ["gini", "entropy"]
}
tuned_dt_custom = tune_model(dt, custom_grid = params)
# tune multiple models dynamically
top3 = compare_models(n_select = 3)
tuned_top3 = [tune_model(i) for i in top3]
Ensemble Model
ensembel learner: ensemble_model, blend_models and stack_models and so on
# import classification module
from pycaret.classification import *
# init setup
clf1 = setup(data, target = 'name-of-target')
# train a decision tree model
dt = create_model('dt')
# train a bagging classifier on dt
bagged_dt = ensemble_model(dt, method = 'Bagging')
# train a adaboost classifier on dt with 100 estimators
boosted_dt = ensemble_model(dt, method = 'Boosting', n_estimators = 100)
# train a votingclassifier on all models in library
blender = blend_models()
# train a voting classifier on specific models
dt = create_model('dt')
rf = create_model('rf')
adaboost = create_model('ada')
blender_specific = blend_models(estimator_list = [dt,rf,adaboost], method = 'soft')
# train a voting classifier dynamically
blender_top5 = blend_models(compare_models(n_select = 5))
# train a stacking classifier
stacker = stack_models(estimator_list = [dt,rf], meta_model = adaboost)
# stack multiple models dynamically
top7 = compare_models(n_select = 7)
stacker = stack_models(estimator_list = top7[1:], meta_model = top7[0])
Predict Model
evaluate the model on previously unseen data
# train a catboost model
catboost = create_model('catboost')
# predict on holdout set (when no data is passed)
pred_holdout = predict_model(catboost)
# predict on new dataset
new_data = pd.read_csv('new-data.csv')
pred_new = predict_model(catboost, data = new_data)
Plot Model
# import classification module
from pycaret.classification import *
# init setup
clf1 = setup(data, target = 'name-of-target')
# train adaboost model
adaboost = create_model('ada')
# AUC plot
plot_model(adaboost, plot = 'auc')
# Decision Boundary
plot_model(adaboost, plot = 'boundary')
# Precision Recall Curve
plot_model(adaboost, plot = 'pr')
# Validation Curve
plot_model(adaboost, plot = 'vc')
Model interpretation with SHAP
interpret_model(xgb) #xgb is the model variable
Model saving and loading
#Before saving the model, we need to finalize it
finalize_model(xgb)
save_model(xgb, ‘diabetes_xgboost’)
#reload model
model = load_model(‘diabetes_xgboost’)
Util functions
# select and finalize the best model in the active run
best_model = automl() #returns the best model based on CV score
# select and finalize the best model based on 'F1' on hold_out set
best_model_holdout = automl(optimize = 'F1', use_holdout = True)
# save model
save_model(model, 'c:/path-to-directory/model-name')
# load model
model = load_model('c:/path-to-directory/model-name')
# retrieve score grid as pandas df
dt = create_model('dt')
dt_results = pull() #this will store dt score grid as pandas df
# get global environment variable
X_train = get_config('X_train') #returns X_train dataset after preprocessing
seed = get_config('seed') returns seed from global environment
# set global environment variable
set_seed(seed, 999) #seed set to 999 in global environment of active run
# get experiment logs as csv file
logs = get_logs() #for active run by default
# get system logs for audit
system_logs = get_system_logs() #read logs.log file from active directory
Experiment Logging
PyCaret 2.0 embeds MLflow tracking component as a backend API and UI for logging parameters, code versions, metrics, and output files
# import classification module
from pycaret.classification import *
# init setup
clf1 = setup(data, target = 'name-of-target', log_experiment = True, experiment_name = 'exp-name-here')
# compare models
best = compare_models()
# start mlflow server on localhost:5000 (when using notebook)
!mlflow ui
example
# import libraries
import pandas as pd
import sys
# define command line parameters
data = sys.argv[1]
target = sys.argv[2]
# load data (replace this part with your own script)
from pycaret.datasets import get_data
input_data = get_data(data)
# init setup
from pycaret.classification import *
clf1 = setup(data = input_data, target = target, log_experiment = True)
# compare baseline models and select top5
top5 = compare_models(n_select = 5)
# tune top5 models
tuned_top5 = [tune_model(i) for i in top5]
# ensemble top5 tuned models
bagged_tuned_top5 = [ensemble_model(i, method = 'Bagging') for i in tuned_top5]
# blend top5 models
blender = blend_models(estimator_list = top5)
# stack top5 models
stacker = stack_models(estimator_list = top5[1:], meta_model = top5[0])
# select best model based on recall
best_model = automl(optimize = 'Recall')
# save model
save_model(best_model, 'c:/path-to-directory/final-model')